From local to global deformation quantization of Poisson manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Local to Global Deformation Quantization of Poisson Manifolds

We give an explicit construction of a deformation quantization of the algebra of functions on a Poisson manifolds, based on Kontsevich’s local formula. The deformed algebra of functions is realized as the algebra of horizontal sections of a vector bundle with flat connection.

متن کامل

Deformation quantization of Poisson manifolds in the derivative expansion

Deformation quantization of Poisson manifolds is studied within the framework of an expansion in powers of derivatives of Poisson structures. Using the Lie group associated with a Poisson bracket algebra we find a solution to the associativity equation in the leading and next-to-leading orders in this expansion.

متن کامل

On the Fedosov Deformation Quantization beyond the Regular Poisson Manifolds

A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the e...

متن کامل

Deformation Quantization of Pseudo Symplectic(Poisson) Groupoids

We introduce a new kind of groupoid—a pseudo étale groupoid, which provides many interesting examples of noncommutative Poisson algebras as defined by Block, Getzler, and Xu. Following the idea that symplectic and Poisson geometries are the semiclassical limits of the corresponding quantum geometries, we quantize these noncommutative Poisson manifolds in the framework of deformation quantizatio...

متن کامل

Wick Type Deformation Quantization of Fedosov Manifolds

A coordinate-free definition for Wick-type symbols is given for symplectic manifolds by means of the Fedosov procedure. The main ingredient of this approach is a bilinear symmetric form defined on the complexified tangent bundle of the symplectic manifold and subject to some set of algebraic and differential conditions. It is precisely the structure which describes a deviation of the Wick-type ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2002

ISSN: 0012-7094

DOI: 10.1215/s0012-7094-02-11524-5